GLASS FORMULATIONS FOR ANTIBACTERIAL APPLICATIONS

Ian Campbell Senior Scientist

Drug-Free Antibacterial Hybrid Biopolymers for Medical Applications

Objectives of Hymedpoly re - Antibacterial glass materials

- Develop bioactive glasses with different charge potential and ion release rates, including:
 - Complex phosphate glasses adjusted to engineer both charge potential and biodegradation rate.
 - Silica glasses: bioactive glasses with a mesoporous structure to act as a reservoir for natural antibacterial inhibitors.
- Characterise surface and chemical properties
- Evaluate their antimicrobial properties through *in vitro* tests characterising aspects such as microbial adhesion, proliferation assays and biofilm formation

Glass

- The nature of glass
- Composition
- Preparation and formats
- Examples
- Possible applications

Glass structure

Crystalline Silica

Vitreous Silica

Vitrification – Transformation to a Glass

Glass structure (network diagram)100% SiO₂

The glassy state

Volume-temperature curves for crystallisation and glass formation showing liquid melting temperature T, and glass transformation range T_g

Glass – basic constituents

Structural Role	Oxide
Network Former	SiO ₂
	B ₂ O ₃
	P_2O_5
Intermediate	Al ₂ O ₃
	TiO ₂
	ZrO ₂
Network Modifier	MgO
	CaO
	SrO
	BaO
	PbO
	ZnO
	Na ₂ O
	Li ₂ O
	K ₂ O

Glass structure silicate network disrupted by Na₂O

Phosphate and borate glasses

Glass preparation by fusion

Glass preparation by fusion

Cooled glass

Melt Quenched on a steel plate

Product as powder frit or shapes

Phase separation in glasses

Phase separation

Glasses prepared via fusion

- Wide compositional and dissolution ranges
- Shaped or crushed for use or processing
- Used as a functional material, active ingredient or as a carrier
- May be shaped post formation to enhance performance: foams, spheres, fibres
- Volatile active loading by impregnation

Foamed Particulate Glass*

Control of dissolution - silicates

Control of dissolution – phosphate glass

% Release Ca

Effect of composition on pH

Control of dissolution - Ag

- 3 glasses from same compositional family
 - All contain same level of silver (4.3 Wt % Ag₂O)
 - All have different gross dissolution and silver (Ag) release rates

Control of dissolution – Zn

PPM Zn 10 min 45°C Deionised water

Glass preparation via chemical routes Sol-gel processing

Sol: A colloidal suspension of solid particles in a liquid

Gel: A substance which contains a continuous solid phase enclosing a continuous liquid phase

- Most commonly used to produce porous silicates

Modification of the process i.e. Active addition and reaction parameters influences product microstructure and release rate not the chemistry of the carrier

Methadone release into pH 7.3 phosphate buffer - KCL

Standard process – allow gel to form, dry, mill, desired PSD (from <1um – 1000um)

Dry / Mill Apply as coating Spray dry Spin (fibre) Cast to net shape Foam

Sol gel coatings with silver

Intact coating dispersed active

Case study: Silver release – porous carrier

- Antibacterial efficacy of silver-films tested against E. Coli
- Material has fast onset of action which is maintained for 24 hours

Actives worked with

APIs

Propranolol hydrochloride Naloxone hydrochloride Oxycodone hydrochloride Rapamycin Guaifenesin Ibuprofen sodium salt Nifedipine Methadone hydrochloride AZD7295 **Bicalutamide** Olaparib

Fragrances

Limonene Linalool β-ionone α-hexylcinnamaldehyde Methyl dihydrojasmonate

Others

Urea Metaldehyde Food dye Ag⁺

Sol-gel vs melt-quench

Sol-gel	Melt-quench
Low temperature (RT-100°C)	High temperature (1000-1500°C)
Structured formed by solubilising ions in a solvent	Structure formed by making ions molten
Products are porous & high surface area	Products are dense & low surface area
Limited compositional range (for glasses)	Wide compositional range
Delivery of organic actives and ions	Delivery of active ions
Reagents relatively expensive, but cheap process	Reagents cheap, but process high energy (cost)

Antibacterial effect - Oligodynamic metals

Silver

Photocatalytic effect

Antibacterial glass applications

Objectives of Hymedpoly re Antibacterial glass materials

 Development of drug free antimicrobial technologies for medical applications such as implants and wound care.

Thank you

Ian Campbell

- T +44 (0)1782 764234
- E ian.campbell@lucideon.com
- W www.lucideon.com

