

ANTIMICROBIAL POLYMERS OF BACTERIAL ORIGIN

Professor Ipsita Roy

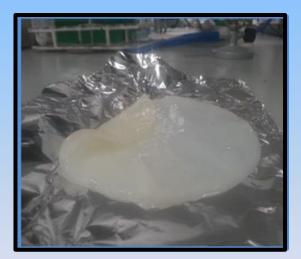
Faculty of Science and Technology University of Westminster, London, UK Visiting Professor, Imperial College, London

UNIVERSITY OF LEADING THE WAY WESTMINSTER#

Regent Street, UoW

New Cavendish Street, UoW

ICTEM, Imperial College

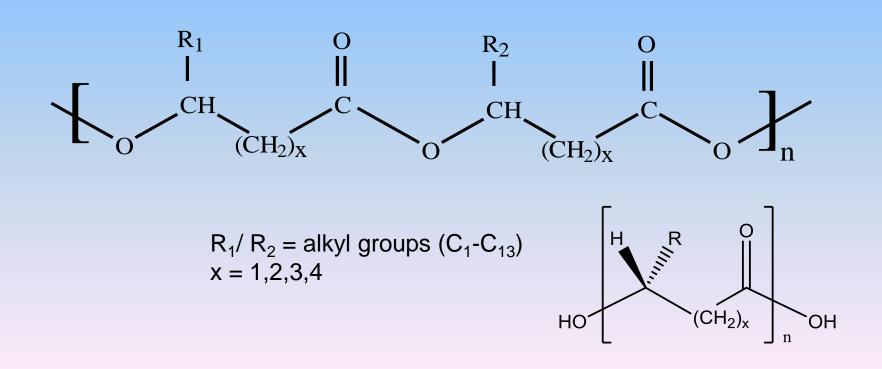


ANTIMICROBIAL POLYMERS OF BACTERIAL ORIGIN

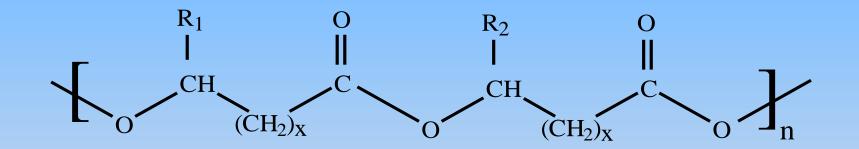
Polyhydroxyalkanoates

Bacterial Cellulose

Polyhydroxyalkanoates, the biodegradable and biocompatible polymers


Polyhydroxyalkanoates are water-insoluble storage polymers which are polyesters of 3-, 4-, 5- and 6hydroxyalkanoic acids produced by a variety of bacterial species under nutrient-limiting conditions. They are biodegradable and biocompatible, exhibit thermoplastic properties and can be produced from renewable carbon sources.

Philip *et al.*, 2007, JCTB, 82 (3):233-247 Akarayonye *et al.*, 2010, JCTB, Volume 85 (6): 732-743 Keshavarz *et al.*, 2010, Current Opinion in Microbiology 13 (3): pp. 321-326


The general structure of Polyhydroxyalkanoates

SCL and MCL Polyhydroxyalkanoates

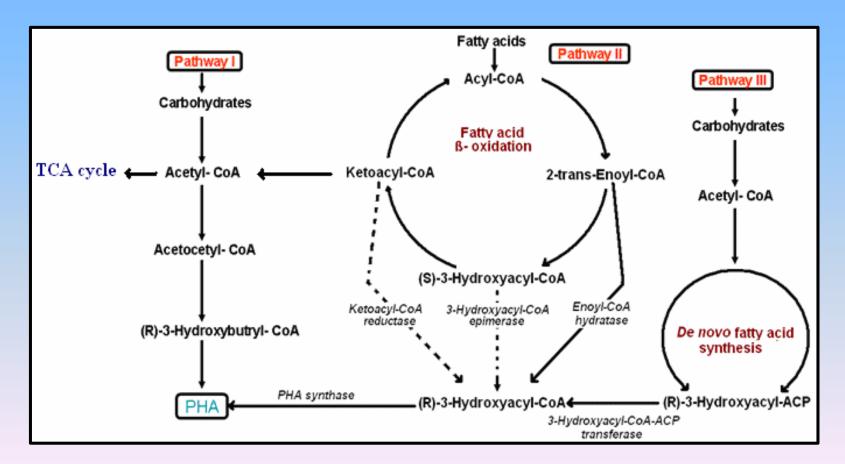
Total Carbon chain length in monomer = 4-5;**SCL PHAs** Total Carbon chain length in monomer =6-14;**MCL PHAs**

> SCL-PHAs- Thermoplastics MCL-PHAs-Elastomerics

Properties of SCL and MCL Polyhydroxyalkanoates

Type of PHA	Melting Temp (°C)	Glass Transition Temp (°C)	Young's Modulus (GPa)	Elongation at break (%)	Tensile strength (MPa)
P(3HB)	171	2.7	3.5	1	40
P(3HB-co- 20%3HV)	145	-1	1.2	3.84	32
P(4HB)	60	-50	0.149	1000	104
P(3HB-co- 16%4HB)	152	-8	ND	444	26
P(3HO-co- 18%3HHx)	61	-35	0.008	400	9
P(3HB-co- 3HHx)	120	-2	0.5	850	21

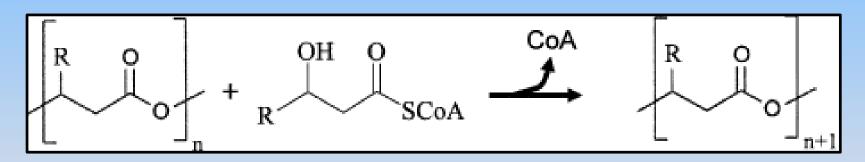
Metabolic Pathways involved in PHA Biosynthesis


Imperial College

London

UNIVERSITYOF

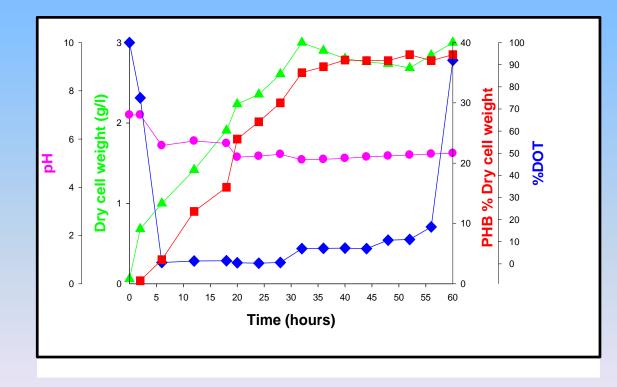
WESTMINSTER[#]


FADING

Polyhydroxyalkanoate Synthases, the enzymes involved in PHA Biosynthesis

PHA synthases catalyse the stereo-selective conversion of (R)-3-hydroxyacyl-CoA substrates to PHAs with the concomitant release of CoA

Production of Polyhydroxyalkanoates in Large Scale Fermenters


Production of SCL-Polyhydroxyalkanoates using *Bacillus cereus* SPV, a Gram positive bacteria

Valappil *et al.*, 2007, Journal of Biotechnology, Volume 127(3), 475-487 Valappil *et al.*, 2008, Journal of Applied Microbiology Jun; 104(6):1624-35 Philip *et al.*, 2009, Biomacromolecules 10(4): 691 – 699 Akarayonye *et al.*, 2010, Biotechnology Journal 7(2) 293-303 Akarayonye *et al.*, 2016, Polymer International,65 (7) 780–791

Large scale production of P(3HB) using fed batch fermentation in Kannan and Rehacek medium (Yield 38% dcw)

INIVERSITYOF

NSTFR囲

GLUCOSE as the main Carbon Source

Valappil et al., 2007, Journal of Biotechnology, 132; 251-258

Material and Thermal Properties of the P(3HB) produced

Type of PHA	Melting Temp (°C)	Glass Transition Temp (°C)	Young's Modulus (GPa)	Elongation at break (%)	Tensile strength (MPa)
P(3HB)	169	1.9	1.7	3.8	25.7

Production of MCL-Polyhydroxyalkanoates using *Pseudomonas mendocina*, a Gram negative bacteria

Rai *et al.*, 2011, Material Science Engineering (Reviews) 72(3) 29-47 Rai *et al.*, 2011, Biomacromolecules, 12 (6), pp 2126–2136 Rai *et al.*, 2011, Journal of Applied Polymer Science, 122, (6), 3606-3617 Lizzaraga *et al.*, 2015, Engineering in Life Sciences 15(6) 612-621 Bagdadi *et al.*, 2016, Journal of Tissue Engineering and Regenerative Medicine, doi: 10.1002/term.2318.

Material and Thermal Properties of the P(3HO) produced

Type of PHA	Melting Temp (°C)	Glass Transition Temp (°C)	Young's Modulus (MPa)	Elongation at break (%)	Tensile strength (MPa)
P(3HO)	42	-38	0.8	1200	8.6

Large scale production of P(3HO) using batch fermentation in MSM media

SODIUM OCTANOATE as the main Carbon Source

Imperial College London Production of a range of SCL-PHAs and MCL-PHAs UNIVERSITY OF SCL-PHAs and MCL-PHAs

Polyhydroxyalkanoates produced using a range of different carbon sources

Production of Antimicrobial PHAs

Production of Antimicrobial PHAs by the addition of Antimicrobial agents of natural origin



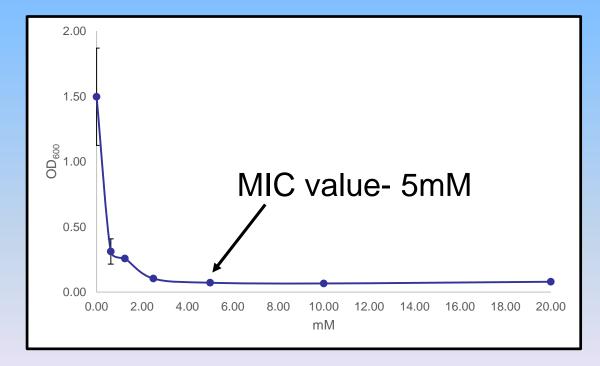
Production of Antimicrobial PHAs


PHA

Trans-cinnamaldehyde

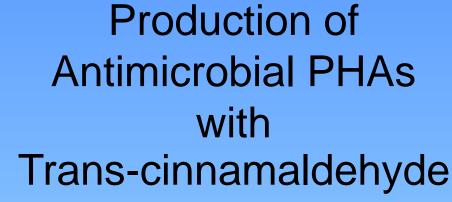
Production of Antimicrobial PHAs with Trans-cinnamaldehyde

тс	Inhibition zone
(µL)	(cm)
РС	1.5; 2.5
2	2.5
4	2.5
8	2.5

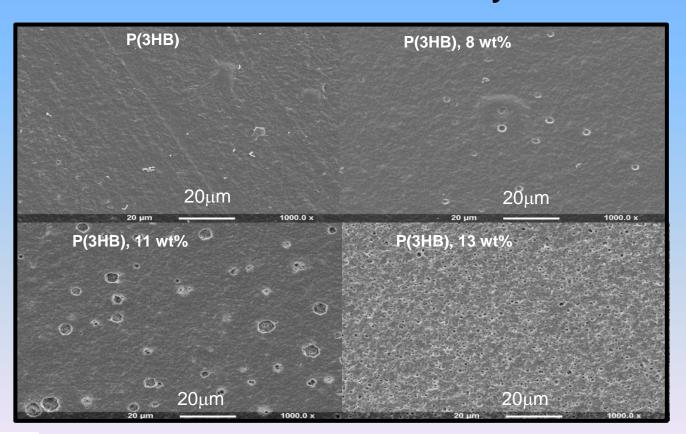

UNIVERSITY OF

WESTMINSTER^m

HyMedPoly Antimicrobial activity against *S. aureus* ATCC® 6538P™

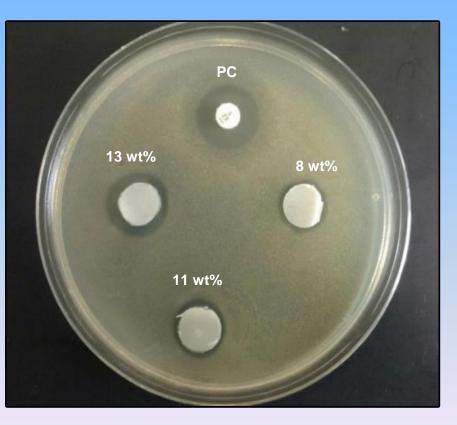

Production of Antimicrobial PHAs with Trans-cinnamaldehyde

Antimicrobial activity against S. aureus ATCC® 6538P™


P(3HB)/TC

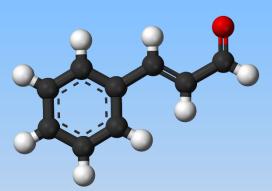
	Tensile strength MPa	Young's Modulus MPa	Extension at break (%)
P(3HB)	21.5	1091.5	28.9
P(3HB), 8 wt%	16.8	802.3	53.5
P(3HB), 11 wt%	15.6	625.1	116.3
P(3HB), 13 wt%	10.7	444.8	109.1

Production of Antimicrobial PHAs with Trans-cinnamaldehyde



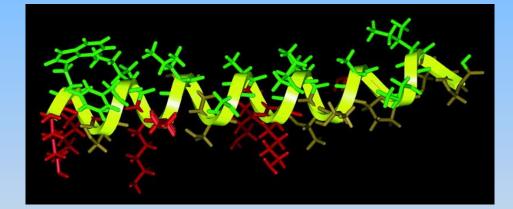
P(3HB)/TC

Production of Antimicrobial PHAs with Trans-cinnamaldehyde


P(3HB)/TC

S. aureus ATCC® 6538P™

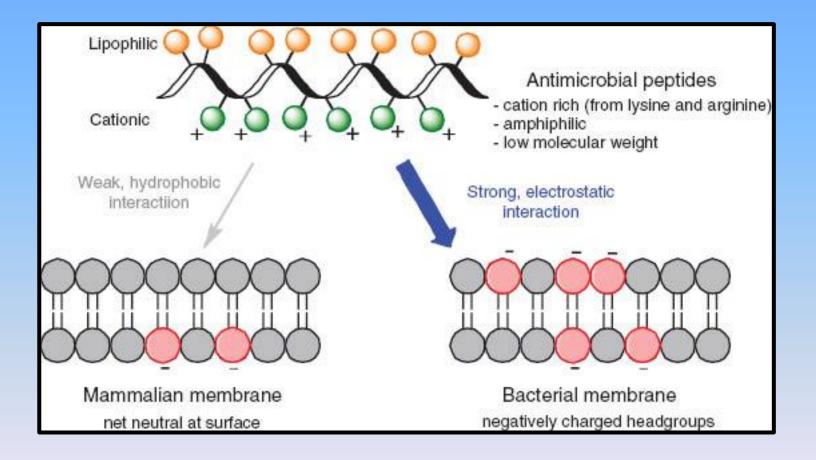
Antimicrobial PHAs with Trans-cinnamaldehyde are effective against *S. aureus*



Production of Antimicrobial PHAs

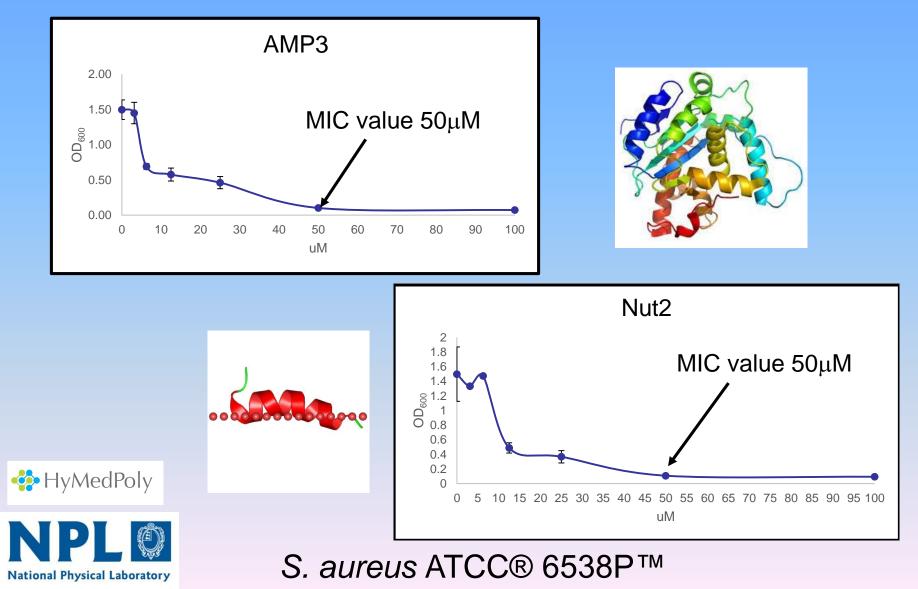
PHA

Antimicrobial peptides



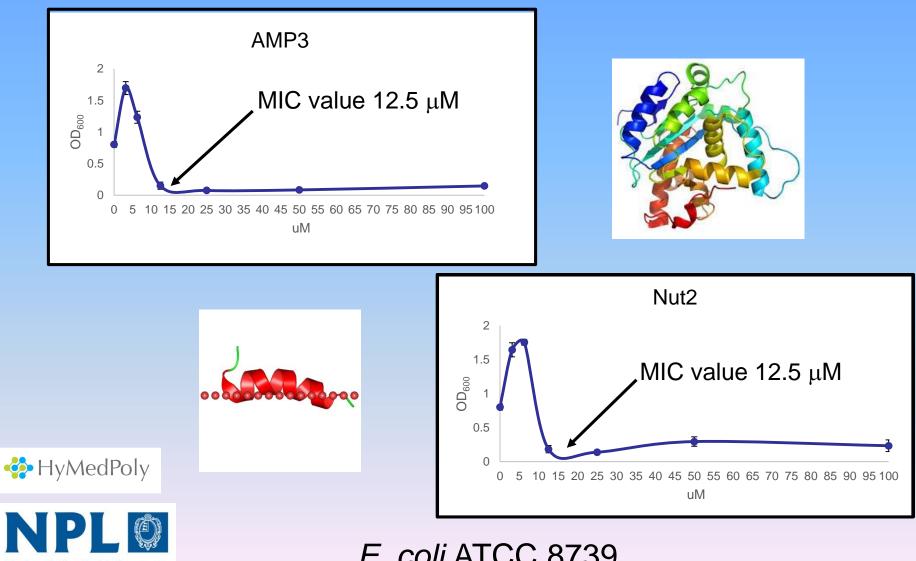
╋

Production of Antimicrobial PHAs



Production of Antimicrobial PHAs

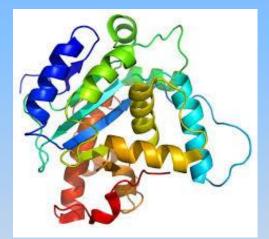
Imperial College


London

Production of **Antimicrobial PHAs**

UNIVERSITY OF WESTMINSTER⊞

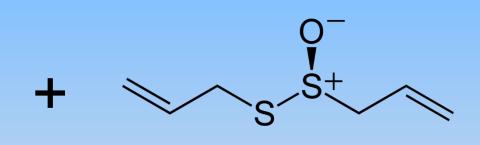
National Physical Laboratory


Imperial College

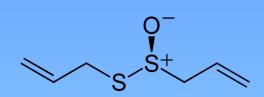
London

E. coli ATCC 8739

Antimicrobial PHAs with Antimicrobial peptides are effective against *S. aureus and E. coli*

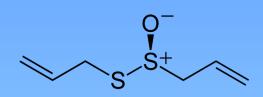


Production of Antimicrobial PHAs

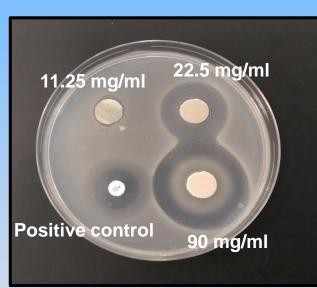

PHA

Garlic extract (allicin)

Production of Antimicrobial PHAs


Concentration of dehydrated garlic	Dehydrated garlic/ Inhibition zone (cm)
3 mg/ml	1.1
5 mg/ml	1.5
7 mg/ml	1.7

Antibacterial assay-agar well diffusion against *S. aureus* ATCC® 6538P™

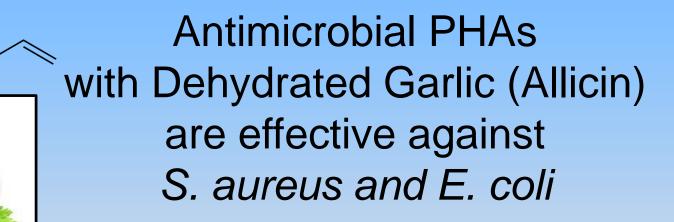


Production of Antimicrobial PHAs MCL-PHA

Concentration of agent	Dehydrated garlic/ Inhibition zone (cm)
11.25 mg/ml	1.5
22.5 mg/ml	2.7
90 mg/ml	3.8

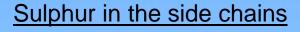

Antibacterial activity of P(3HO-co-3HD) films against *S. aureus* ATCC® 6538P™

Production of Antimicrobial PHAs MCL-PHA


Concentration of agent	Dehydrated garlic/ Inhibition zone (cm)
11.25 mg/ml	1.7
22.5 mg/ml	2.2
90 mg/ml	2.7

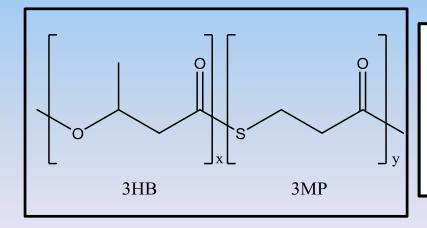
Antibacterial activity of P(3HO-co-3HD) films against *E.coli* ATCC 8739

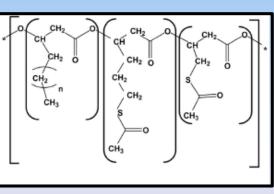
Inherently Antimicrobial PHAs Thio-PHAs

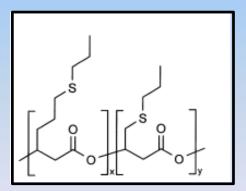

Thio-Polyhydroxyalkanoates

Sulphur containing PHAs

Sulphur in the backbone

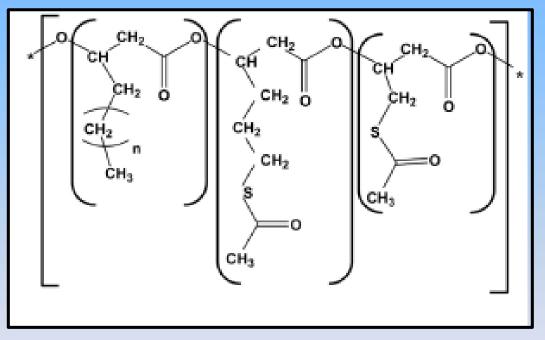

- 3-mercaptopropionate (3MP)
- 3-mercaptobutyrate (3MB)
- 3-mercaptovalerate (3MV)


copolymers with 3-hydroxybutyrate (3HB)



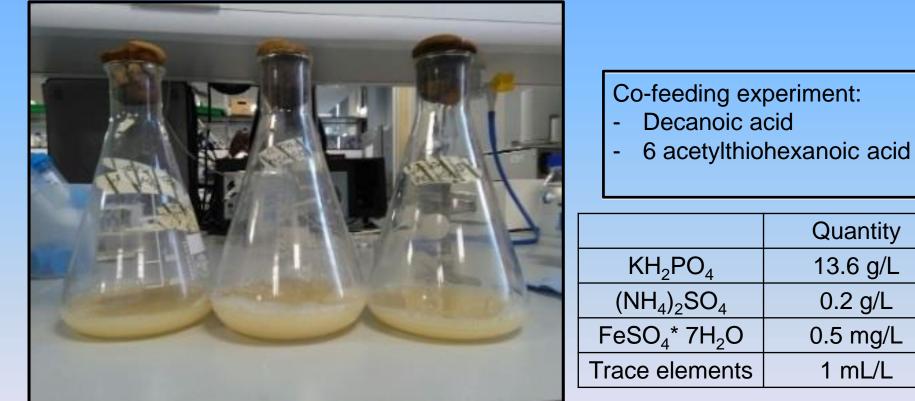
Thioester groups

Thioether groups



Thio-Polyhydroxyalkanoates Sulphur containing PHAs

Sulphur in the side chains: Thioester groups



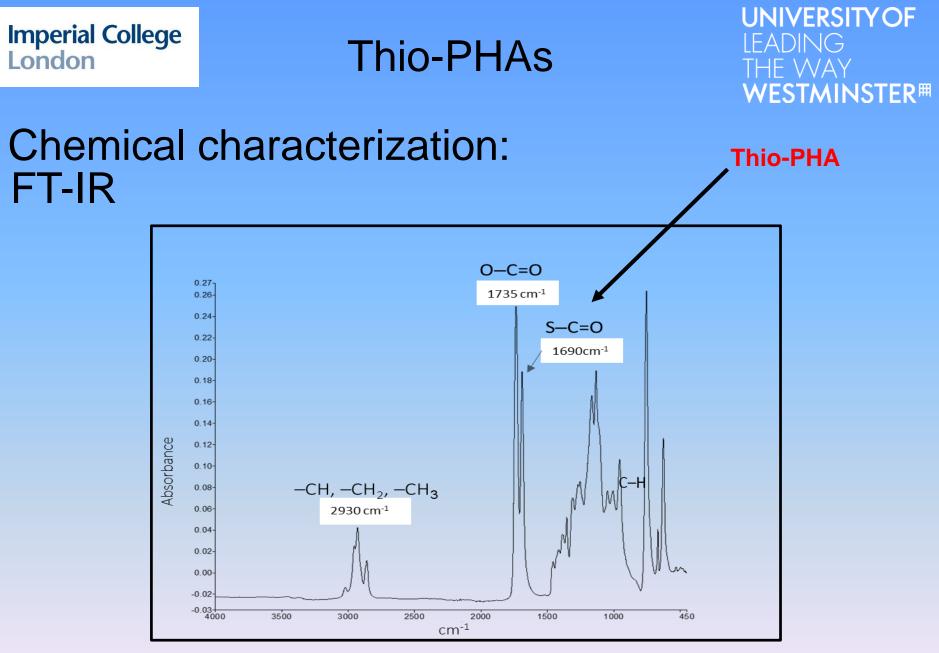
Proven intrinsic antimicrobial properties

Against methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo

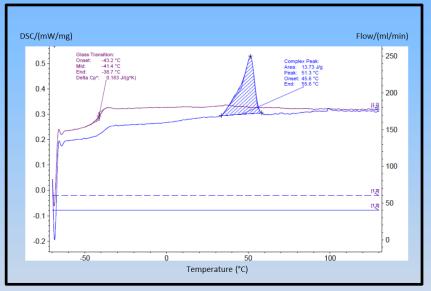
FADING Production of **WESTMINSTER**^m Thio-Polyhydroxyalkanoates

UNIVERSITY OF

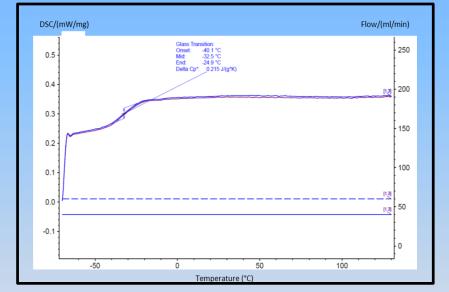
	Quantity	
KH ₂ PO ₄	13.6 g/L	
$(NH_4)_2SO_4$	0.2 g/L	
FeSO ₄ * 7H ₂ O	0.5 mg/L	
Trace elements	1 mL/L	


Imperial College London

Characterisation of the Thio-PHAs


CONSILIO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

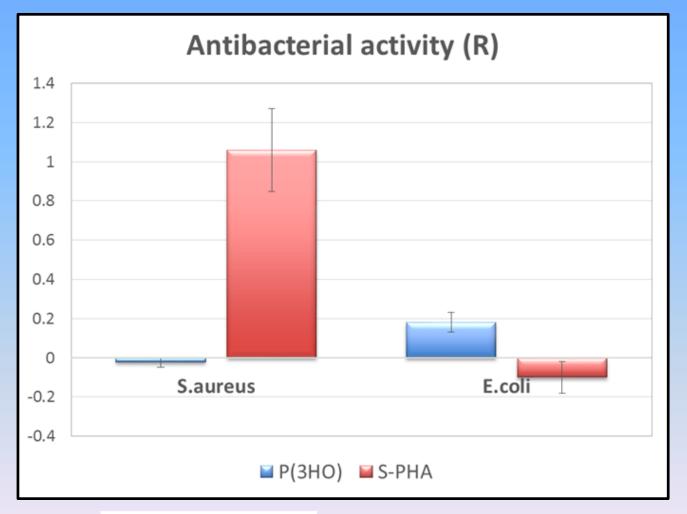
Thio-PHAs


Thermal characterization: DSC

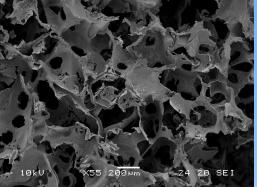
P(3HHx-3HO-3HD)

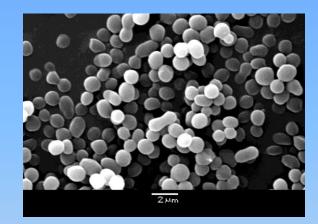
HyMedPoly

CSIC


P(3HHx-3HO-3HD-3H4ATB-3H6ATH)

Polymer	Т _т (°С)	Т _g (°С)
P(3HHx-3HO-3HD)	51.3	-41.4
P(3HHx-3HO-3HD-	-	-32.5
3H6ATH)		





WESTMINSTER[®] Scaffolds/devices/structures made using PHAs

P(3HB) and P(3HB)/Bioglass® composites

UNIVERSITY OF

Drug Delivery

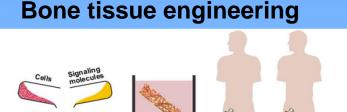
Biodegradable Drug Eluting Stents

Biodegradable Nerve Conduits

PHAs The new emerging medical materials!

Valappil *et al.*, 2006; *Expert Review in Medical Devices* **3(6)**: 853-868 Rai *et al.*, 2010; Material Science Engineering (Reviews) **72(3)**:29-47 Dubey *et al.*, 2014 Novel cardiac patch development using biopolymers and biocomposites; ISBN13: 9780841229907

Regulatory Body Approval of Polyhydroxyalkanoates for Medical Applications


Apr 2, 2007 Tepha, Inc. Receives FDA Clearance for TephaFLEX® Absorbable Suture product for marketing in the U.S. TephaFLEX® is the first medical device derived from PHAs developed by Tepha and the MIT.

✤ May 1, 2009 Tepha, Inc. announced that its corporate partner, Aesculap AG, has received a CE Mark and is launching its MonoMax monofilament absorbable suture for general surgical indications in Europe. The product is made with TephaFLEX® fibre.

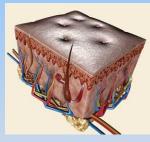
Medical applications of PHAs being explored in my Group

UNIVERSITY OF Leading The Way Westminster#

 $3D \text{ matrix} \longrightarrow \bigcup_{\text{Culture}} \longrightarrow \bigcup_{\text{Implant}} \longrightarrow \bigcup_{\text{Healty}} \longrightarrow \bigcup_{\text{bone}} \longrightarrow \bigcup_{\text{Implant}} \dots \longrightarrow \bigcup_{I$

P(3HB) and P(3HB)/Bioglass® composites

Cartilage Tissue Engineering



P(3HB)/MFC composites

Semiartificial Pancreas

P(3HO)/P(3HB) Blends

Skin Tissue Engineering/ Wound Healing

Cardiac Tissue Engineering **P**

P(3HB)/P(3HB-co3HV)

Drug Delivery

P(3HO)/NanoBioglass Composites

P(3HO) and P(3HN-co-3HP)

Medical Device Development:

Biodegradable Drug Eluting Stents

Biodegradable Nerve Conduits

SCL/MCL PHAs

SCL/MCL PHAs

Bacterial cellulose based antimicrobial materials

Bacterial cellulose

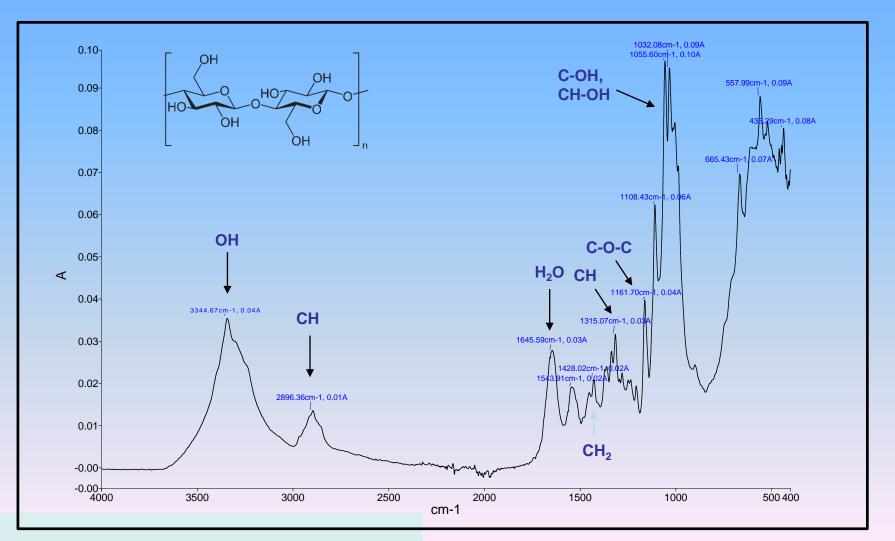
Bacterial cellulose (BC) produced by bacteria from different genera (for example *Gluconacetobacter*). Bacterial cellulose shows a peculiar tridimensional structure. It is produced as nanosized fibrils with high degree of purity and crystallinity, giving it unique physical and mechanical properties like strength and water retention. Moreover, it is much purer than plant cellulose which is normally in the form of lignocellulose and is known to be highly biocompatible, so it is very well suited for applications in the biomedical field.

Helenius, et al., 2006, Journal of Biomedical Materials Part A 76 (2) 431-438.

Production of Bacterial cellulose

Gluconacetobacter xylinus 5-7 days at 30 °C

Bacterial cellulose pellicle

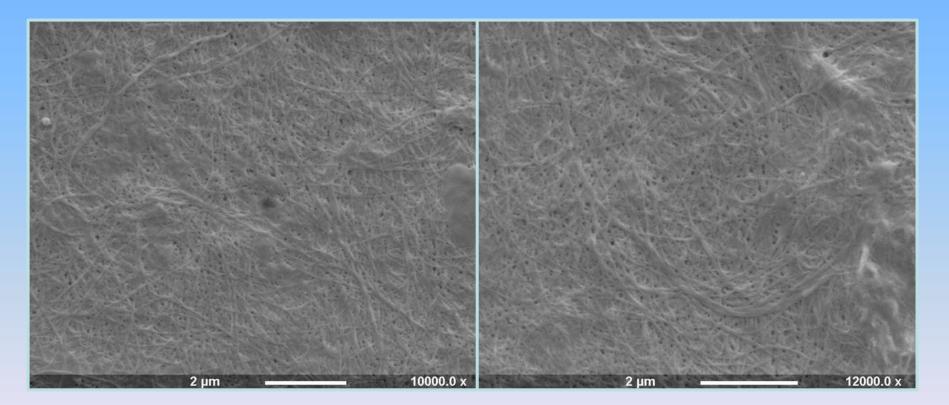

Bacterial cellulose pellicle after washing

Imperial College London

Characterisation of Bacterial cellulose

UNIVERSITYOF

WESTMINSTER[#]

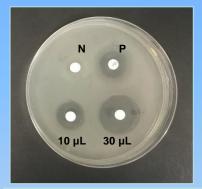


Characterisation of Bacterial cellulose

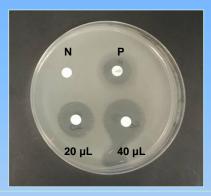
UNIVERSITY OF

THE WAY Westminster#

IFADING



SEM



UNIVERSITY OF lfading **WESTMINSTER**[#]

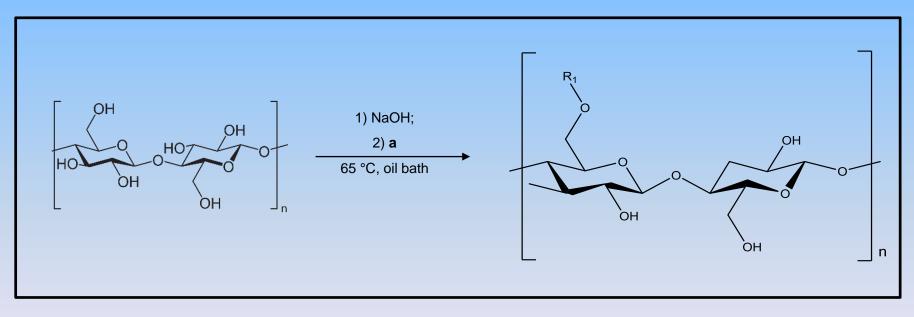
Antibacterial activity of additive 'a'

10 µL, ZOI = 1.7 cm 30μ , ZOI = 2.3 cm

20 µL, ZOI = 2.1 cm 40 μ L, ZOI = 2.5 cm

 $30 \,\mu\text{L}, ZOI = 2.3 \,\text{cm}$ 50 μ L, ZOI = 2.8 cm

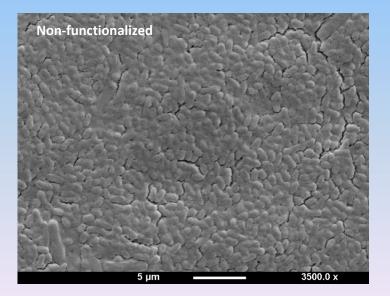
50 µL, ZOI = 2.8 cm 70 µL, ZOI = 3.1 cm


50 µL, ZOI = 2.8 cm 100 µL, ZOI = 3.3 cm

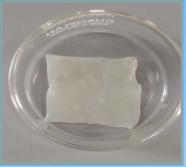
S. aureus ATCC® 6538P™

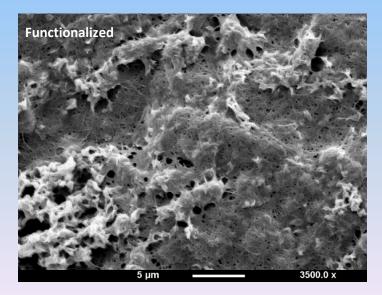
Surface modification of Bacterial cellulose

Imperial College London


Bacterial Cellulose

UNIVERSITY OF LEADING THE WAY WESTMINSTER^{##}


Surface Antibacterial testing


Non-functionalized

Functionalized

S. aureus ATCC® 6538P™

Conclusions

- Polyhydroxyalkanoates (PHAs) are an emerging class of biodegradable and biocompatible polymers of natural origin with huge potential in biomedical applications.
- *Bacillus* sp. and *Psuedomonas* sp. have been used in the Roy lab to produce SCL-PHAs and MCL-PHAs respectively.
- The PHAs produced have been used successfully in development of antimicrobial polymers using additives-TC, AMP, Allicin.
- Thio-PHAs are another emerging class of antibacterial polymers
- Bacterial Cellulose is another natural polymer with potential in biomedical applications including wound healing.

Imperial College London

Sheila Piarali (TC, AMP and PHA)



Elena Marcello (Thio-PHA)

Key Scientists

Isabel Orlando (Bacterial Cellulose)

Alexandra Paxinou (Allicin and PHA)

UNIVERSITY OF

THE WAY Westminster#

LEADING

Dr Pooja Basnett (All aspects)

UNIVERSITY OF LEADING THE WAY WESTMINSTER[#]

The HyMedPoly Group from UoW

Funding for this work was European Commission's "Horizon 2020 Programme" under Grant agreement No. 643050 (HyMedPoly).

UNIVERSITY OF LEADING THE WAY WESTMINSTER#

My Group

Thanks for your attention!